Théorèmes de comparaison

FondamentalThéorème

α %alpha désigne un réel fini, + + infinity ou - infinity ,

  1. Si pour x x voisin de α %alpha , f ( x ) g ( x ) f(x)<=g(x) et lim x α f ( x ) = + lim from {x toward %alpha} f(x) = +infinity alors : lim x α g ( x ) = + lim from {x toward %alpha} g(x) = +infinity

  2. Si pour x x voisin de α %alpha , f ( x ) g ( x ) f(x)<=g(x) et lim x α g ( x ) = lim from {x toward %alpha} g(x) = -infinity alors : lim x α f ( x ) = lim from {x toward %alpha} f(x) = -infinity

  3. Si pour x x voisin de α %alpha , u ( x ) f ( x ) v ( x ) u(x)<=f(x)<=v(x) et lim x α u ( x ) = lim x α v ( x ) = l lim from {x toward %alpha} u(x) = lim from {x toward %alpha} v(x) = l alors : lim x α f ( x ) = l lim from {x toward %alpha} f(x) = l

Exemple

Déterminer lim x + cos x x 2 lim from {x toward +infinity} {{cos x}over{x^2}}

On a 1 x 2 cos x x 2 1 x 2 -{{1}over{x^2}}<={cos x}over{x^2}<={1}over{x^2} donc lim x + cos x x 2 = 0 lim from {x toward +infinity} {{cos x}over{x^2}}=0