Intégrales généralisées

Intégrales généralisées

Question

Les intégrales suivantes sont elles convergente ou divergente ?

  1. I = 0 1 1 1 x dx I = int from 0 to 1 {1 over sqrt {1-x}} dx

  2. J = 0 + 4 x 2 + x x 2 + 1 dx J = int from 0 to {+ infinity} {{4 x^2 + x} over {x^2 +1}} dx

Solution

  1. La fonction g : x 1 1 x g ":" x toward 1 over sqrt {1-x}   est telle que lim x 1 g ( x ) = + lim from {x toward 1^{{}-{}}} g(x) = + infinity

    Soit X < 1 X < 1 , g g est intégrable sur [ 0 ; X ] left [ 0 nitalic ; X right ]

    On calcule φ ( X ) = 0 X 1 1 x dx %varphi (X) = int from 0 to X {1 over sqrt {1-x}} dx

    On obtient :

    φ ( X ) = 0 X 1 1 x dx = [ 2 1 x ] 0 X = 2 ( 1 1 X ) %varphi (X) = int from 0 to X {1 over sqrt {1-x}} dx = left [ -2 sqrt {1-x} right]_0^X = 2 left ( 1 - sqrt {1-X}right )

    Or

    lim X 1 φ ( X ) = lim X 1 2 ( 1 1 X ) = 2 lim from {X toward 1 } %varphi (X) = lim from {X toward 1 } 2 left ( 1 - sqrt {1-X}right ) = 2

    Donc I I est convergente et

    I = 0 1 1 1 x dx = 2 I = int from 0 to 1 {1 over sqrt {1-x}} dx = 2

  2. Soit f ( x ) = 4 x 2 + x x 2 + 1 f(x)= {4 x^2 + x} over {x^2 +1}

    On a :

    lim x + f ( x ) = lim x + 4 x 2 x 2 = 4 lim from {x toward + infinity} f(x) = lim from {x toward + infinity} {{4 x^2 } over {x^2}} = 4

    Donc pour ε = 1 , x 0 / x x 0 | f ( x ) 4 | 1 3 f ( x ) 5 %varepsilon = 1, ` exists x_0 / forall x >= x_0 ~ abs{f(x)-4}<=1 `dlrarrow` 3 <=f(x)<=5

    On en déduit :

    x 0 X f ( x ) dx x 0 X 3 dx int from x_0 to X f(x) dx >= int from x_0 to X 3 dx

    donc

    x 0 X f ( x ) dx 3 X 3 x 0 int from x_0 to X f(x) dx >= 3 X - 3 x_0

    et donc

    lim X + x 0 X f ( x ) dx = + lim from {X toward + infinity} {int from x_0 to X f(x) dx }= + infinity

    L'intégrale J J est donc divergente.