Les intégrales suivantes sont elles convergente ou divergente ?
I = ∫ 0 1 1 1 − x dx I = int from 0 to 1 {1 over sqrt {1-x}} dx
J = ∫ 0 + ∞ 4 x 2 + x x 2 + 1 dx J = int from 0 to {+ infinity} {{4 x^2 + x} over {x^2 +1}} dx
La fonction g : x → 1 1 − x g ":" x toward 1 over sqrt {1-x} est telle que lim x → 1 − g ( x ) = + ∞ lim from {x toward 1^{{}-{}}} g(x) = + infinity
Soit X < 1 X < 1 , g g est intégrable sur [ 0 ; X ] left [ 0 nitalic ; X right ]
On calcule φ ( X ) = ∫ 0 X 1 1 − x dx %varphi (X) = int from 0 to X {1 over sqrt {1-x}} dx
On obtient :
φ ( X ) = ∫ 0 X 1 1 − x dx = [ − 2 1 − x ] 0 X = 2 ( 1 − 1 − X ) %varphi (X) = int from 0 to X {1 over sqrt {1-x}} dx = left [ -2 sqrt {1-x} right]_0^X = 2 left ( 1 - sqrt {1-X}right )
Or
lim X → 1 φ ( X ) = lim X → 1 2 ( 1 − 1 − X ) = 2 lim from {X toward 1 } %varphi (X) = lim from {X toward 1 } 2 left ( 1 - sqrt {1-X}right ) = 2
Donc I I est convergente et
I = ∫ 0 1 1 1 − x dx = 2 I = int from 0 to 1 {1 over sqrt {1-x}} dx = 2
Soit f ( x ) = 4 x 2 + x x 2 + 1 f(x)= {4 x^2 + x} over {x^2 +1}
On a :
lim x → + ∞ f ( x ) = lim x → + ∞ 4 x 2 x 2 = 4 lim from {x toward + infinity} f(x) = lim from {x toward + infinity} {{4 x^2 } over {x^2}} = 4
Donc pour ε = 1 , ∃ x 0 / ∀ x ≥ x 0 | f ( x ) − 4 | ≤ 1 ⇔ 3 ≤ f ( x ) ≤ 5 %varepsilon = 1, ` exists x_0 / forall x >= x_0 ~ abs{f(x)-4}<=1 `dlrarrow` 3 <=f(x)<=5
On en déduit :
∫ x 0 X f ( x ) dx ≥ ∫ x 0 X 3 dx int from x_0 to X f(x) dx >= int from x_0 to X 3 dx
donc
∫ x 0 X f ( x ) dx ≥ 3 X − 3 x 0 int from x_0 to X f(x) dx >= 3 X - 3 x_0
et donc
lim X → + ∞ ∫ x 0 X f ( x ) dx = + ∞ lim from {X toward + infinity} {int from x_0 to X f(x) dx }= + infinity
L'intégrale J J est donc divergente.