Croissance comparée de e^x, x^α et ln x

FondamentalThéorème

α %alpha est un réel strictement positif, les fonctions x e x x toward e^x , x x α x toward x^%alpha et x ln x x toward ln x ont pour limite + "+"infinity en + "+"infinity , et on a :

lim x + ln x x α = 0 ; lim x + e x x α = + lim from {x toward +infinity} {ln x over x^%alpha} = 0 " "; " "lim from {x toward +infinity} {e^x over x^%alpha} = +infinity

De plus

lim x 0 ( x > 0 ) x α ln x = 0 ; lim x x α e x = 0 lim from {x toward 0(x>0)} x^%alpha ln x = 0 " "; " "lim from {x toward -infinity} {x^%alpha e^x } = 0

On dit, par abus, que, lorsque x x tend vers + "+"infinity , les puissances positives d'un réel positif "l'emportent" sur la fonction ln, et que la fonction exponentielle "l'emporte" sur toute puissance positive d'un réel positif.

Exemple

Calculer : 1) lim x + e x x 2 + 2 lim from {x toward +infinity} {{e^x} over {x^2+2}} ; 2) lim x + x 2 + 2 e x lim from {x toward +infinity} {x^2+2-e^x} ; 3) lim x + x 2 + 2 ln x lim from {x toward +infinity} {x^2+2-ln x}

  1. On écrit : e x x 2 + 2 = e x x 2 × x 2 x 2 + 2 {e^x} over {x^2+2} = {e^x over x^2} times {x^2 over {x^2+2}}

    Or lim x + e x x 2 = + lim from {x toward +infinity} {{e^x} over {x^2}} = +infinity et lim x + x 2 x 2 + 2 = 1 lim from {x toward +infinity} {{x^2} over {x^2+2}} =1

    donc lim x + e x x 2 = + lim from {x toward +infinity} {{e^x} over {x^2}} = +infinity

  2. x 2 + 2 e x = x 2 ( 1 + 2 x 2 e x x 2 ) x^2+2-e^x = x^2 left ( 1 + 2 over x^2 - e^x over x^2 right )

    on a : lim x + ( 1 + 2 x 2 e x x 2 ) = lim x + ( e x x 2 ) = lim from {x toward +infinity} left ( 1 + 2 over x^2 - e^x over x^2 right )= lim from {x toward +infinity} left ( - {e^x over x^2} right )= - infinity et lim x + x 2 = + lim from {x toward +infinity} x^2 = +infinity

    donc lim x + x 2 + 2 e x = lim from {x toward +infinity} x^2+2-e^x = -infinity

  3. x 2 + 2 ln x = x 2 ( 1 + 2 x 2 ln x x 2 ) x^2+2-ln x = x^2 left ( 1 + 2 over x^2 - {ln x} over x^2 right )

    on a : lim x + 2 x 2 = 0 lim from {x toward +infinity} {2 over x^2} = 0 et lim x + ln x x 2 = 0 lim from {x toward +infinity} {{ln x} over x^2} = 0

    donc lim x + ( 1 + 2 x 2 ln x x 2 ) = 1 lim from {x toward +infinity} left ( 1 + 2 over x^2 - {ln x} over x^2 right )= 1

    enfin