Propriétés de majoration

Fondamental

Soient f f et g g deux fonctions telles que x ] a ; b ] , 0 f ( x ) g ( x ) forall x in left ] a nitalic ; b right ] ", " 0 <= f(x)<= g(x)

  1. Si a b g ( x ) dx int from a to b g(x) dx converge, alors a b f ( x ) dx int from a to b f(x) dx converge.

  2. Si a b f ( x ) dx int from a to b f(x) dx diverge, alors a b g ( x ) dx int from a to b g(x) dx diverge.

Exemple

cos x x {cos x} over sqrt x est intégrable sur [ 0 ; 1 ] left [ 0 nitalic ; 1 right ]

En effet, on a la majoration 0 cos x x 1 x 0 <= {cos x} over sqrt x <= 1 over sqrt x et 1 x 1 over sqrt x est intégrable sur [ 0 ; 1 ] left [ 0 nitalic ; 1 right ] .

par contre, cet argument ne donne pas la valeur de 0 1 cos x x dx int from 0 to 1 {{cos x} over sqrt x} dx .

Fondamental

Soient f f et g g deux fonctions telles que x a , 0 f ( x ) g ( x ) forall x >= a ", " 0 <= f(x)<= g(x)

  1. Si a + g ( x ) dx int from a to +infinity g(x) dx converge, alors a + f ( x ) dx int from a to +infinity f(x) dx converge.

  2. Si a + f ( x ) dx int from a to +infinity f(x) dx diverge, alors a + g ( x ) dx int from a to +infinity g(x) dx diverge

Exemple

0 + e x dx = 1 int from 0 to {+infinity} e^-x dx = 1 et 0 e x 2 e x 0 <= e^{-x^2} <= e^-x donc 0 + e x 2 dx int from 0 to {+infinity} e^-x^2 dx converge.