Propriétés élémentaires des nombres réels

  1. x , x > 0 1 x > 0 forall x in setR^{{}*{}} , x>0 `drarrow` 1 over x > 0

  2. ( x , y ) ( + ) 2 , x < y 1 y < 1 x forall (x,y) in ( setR^{{}*{}}_{{}+{}})^2 , ` x<y `drarrow` 1 over y < 1 over x

  3. n , ( x , y ) ( + ) 2 , x y x n y n forall n in setN^{{}*{}} , ` forall (x,y) in ( setR_{{}+{}})^2 , ` x <= y `dlrarrow` x^n <= y^n

  4. Pour tout  n n de setN^{{}*{}} et tous réels  x 1 , , x n , y 1 , , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n : | i = 1 n x i | i = 1 n | x i | lline Sum from {i=1} to{n} x_i rline <= Sum from {i=1} to{n} lline x_i rline

  5. Pour tout n n de setN^{{}*{}} et tous réels  x 1 , , x n , y 1 , , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n :

    • i { 1 , , n } , x i y i i = 1 n x i i = 1 n y i forall i in lbrace 1, dotsaxis , n rbrace, ` x_i<= y_i `drarrow` Sum from {i=1} to{n} x_i<= Sum from {i=1} to{n} y_i

    • i { 1 , , n } , 0 x i y i i = 1 n x i i = 1 n y i forall i in lbrace 1, dotsaxis , n rbrace, ` 0<=x_i<=y_i `drarrow` Prod from {i=1} to{n} x_i<= Prod from {i=1} to{n} y_i

    • i { 1 , , n } , x i y i et i = 1 n x i = i = 1 n y i ( i { 1 , , n } , x i = y i ) forall i in lbrace 1, dotsaxis , n rbrace, ` x_i<= y_i `"et"` Sum from {i=1} to{n} x_i = Sum from {i=1} to{n} y_i `drarrow` ( forall i in lbrace 1, dotsaxis , n rbrace, `x_i= y_i )

FondamentalInégalité de Cauchy-Schwarz

Pour tout  n n de setN^{{}*{}} et tous réels

x 1 , , x n , y 1 , , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n  : ( i = 1 n x i y i ) 2 ( i = 1 n x i 2 ) ( i = 1 n y i 2 ) left ( sum from {i=1} to {n} x_i y_i right )^2 <= left ( sum from {i=1} to {n} x_i^2 right )left ( sum from {i=1} to {n} y_i^2 right )