∀ x ∈ ℝ ∗ , x > 0 ⇒ 1 x > 0 forall x in setR^{{}*{}} , x>0 `drarrow` 1 over x > 0
∀ ( x , y ) ∈ ( ℝ + ∗ ) 2 , x < y ⇒ 1 y < 1 x forall (x,y) in ( setR^{{}*{}}_{{}+{}})^2 , ` x<y `drarrow` 1 over y < 1 over x
∀ n ∈ ℕ ∗ , ∀ ( x , y ) ∈ ( ℝ + ) 2 , x ≤ y ⇔ x n ≤ y n forall n in setN^{{}*{}} , ` forall (x,y) in ( setR_{{}+{}})^2 , ` x <= y `dlrarrow` x^n <= y^n
Pour tout n n de ℕ ∗ setN^{{}*{}} et tous réels x 1 , ⋯ , x n , y 1 , ⋯ , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n : | ∑ i = 1 n x i | ≤ ∑ i = 1 n | x i | lline Sum from {i=1} to{n} x_i rline <= Sum from {i=1} to{n} lline x_i rline
Pour tout n n de ℕ ∗ setN^{{}*{}} et tous réels x 1 , ⋯ , x n , y 1 , ⋯ , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n :
∀ i ∈ { 1 , ⋯ , n } , x i ≤ y i ⇒ ∑ i = 1 n x i ≤ ∑ i = 1 n y i forall i in lbrace 1, dotsaxis , n rbrace, ` x_i<= y_i `drarrow` Sum from {i=1} to{n} x_i<= Sum from {i=1} to{n} y_i
∀ i ∈ { 1 , ⋯ , n } , 0 ≤ x i ≤ y i ⇒ ∏ i = 1 n x i ≤ ∏ i = 1 n y i forall i in lbrace 1, dotsaxis , n rbrace, ` 0<=x_i<=y_i `drarrow` Prod from {i=1} to{n} x_i<= Prod from {i=1} to{n} y_i
∀ i ∈ { 1 , ⋯ , n } , x i ≤ y i et ∑ i = 1 n x i = ∑ i = 1 n y i ⇒ ( ∀ i ∈ { 1 , ⋯ , n } , x i = y i ) forall i in lbrace 1, dotsaxis , n rbrace, ` x_i<= y_i `"et"` Sum from {i=1} to{n} x_i = Sum from {i=1} to{n} y_i `drarrow` ( forall i in lbrace 1, dotsaxis , n rbrace, `x_i= y_i )
Pour tout n n de ℕ ∗ setN^{{}*{}} et tous réels
x 1 , ⋯ , x n , y 1 , ⋯ , y n x_1 , dotsaxis , x_n , y_1 , dotsaxis , y_n : ( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) left ( sum from {i=1} to {n} x_i y_i right )^2 <= left ( sum from {i=1} to {n} x_i^2 right )left ( sum from {i=1} to {n} y_i^2 right )