Seiches et marées

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT

Olivier THUAL, 3 janvier 2011

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT Seiches et marées

Ondes d'inertie

Oscillations et seiches dans un port

Introduction

1. Phénomène de seiche

Les phènomènes de réflexion et de diffraction des ondes de surface sont décrits en prenant en compte les frontières. Pour une fréquence donnée on se ramène à une équation d'Helmoltz.

2. Modélisation de la marée

Le potentiel de marée dû à l'attraction de la Lune s'obtient en supposant que la Terre décrit une rotation solide autour du centre de gravité des deux astres. Le potentiel dû au Soleil s'y ajoute.

2. Ondes d'inertie

Les ondes de marées peuvent être modélisées à l'aide des équations de Saint-Venant linéaires en rotation : ondes de Poincaré, ondes de Proudman, ondes de Kelvin de bord, amphidromie de Kelvin, ...

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT Seiches et marées 2/36

Phénomène de seich Réflexion des ondes de surfac

Équations de Saint-Venant 2D linéaires

$$\frac{\partial u}{\partial t} = -g\frac{\partial \eta}{\partial x}, \qquad \frac{\partial v}{\partial t} = -g\frac{\partial \eta}{\partial y}$$
$$\frac{\partial \eta}{\partial t} + h_r\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

Conditions aux limites

 $\frac{\partial \eta}{\partial n} = 0$ • Réfléchissantes : $\underline{U} \cdot \underline{n} = 0 \implies$ • Absorbantes : $\eta = 0$

Elimination de la vitesse

$$\frac{\partial^2 \eta}{\partial t^2} - g h_r \left(\frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} \right) = 0$$

イロト スピト メヨト メヨ

Phénomène de seiche délisation de la marée Ondes d'inertie Ondes de surface Cas des profondeurs quelconques

Recherche de solutions complexes :

$$\eta(x, y, t) = F(x, y) e^{-i\omega t}$$
 solution de $\frac{\partial^2 \eta}{\partial t^2} - c_r^2 \Delta \eta = 0$

Équation d'Helmoltz pour le cas peu profond : $\Delta F + k^2 F = 0 \quad \text{avec} \quad \omega = c_r k$

 Phénomène de seiche
 Réflexion des ondes de surface

 Modélisation de la marée
 Diffraction des ondes de surface

 Ondes d'inertie
 Cas des profondeurs quelconques

Houle en profondeur quelconque

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial z} = 0 \quad \text{en } z = 0$$

$$\Delta \phi = 0$$

$$\frac{\partial \phi}{\partial z} = 0 \quad \text{en } z = -h_r$$

Recherche de solutions complexes : $\{\eta(x, y, t), \phi(x, y, z, t)\} = \left\{1, \frac{g}{i\omega} \frac{\cosh[k(z+h_r)]}{\cosh(kh_r)}\right\} F(x, y) e^{-i\omega t}$

Équation d'Helmoltz pour les profondeurs quelconques :

$$\Delta F + k^2 F = 0$$
 avec $\omega^2 = g k \tanh(k h_r)$

Phénomène de seiche Modélisation de la marée Ondes d'inertie

Potentiel total de marée Modélisation de la marée dynamique

Phénomène de seiche Modélisation de la marée Ondes d'inertie Modélisation de la marée

Origine de la marée :

L'attraction de la Lune et du Soleil

	◆□▶ ◆舂▶ ◆≧▶ ◆≧▶	目 のへの
MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT	Seiches et marées	10 / 36

Phénomène de seiche S Modélisation de la marée F

ion de la marée Potentiel total de marée Ondes d'inertie Modélisation de la marée dynamiq

Origine de la marée : L'attraction de la Lune et du Soleil

E 990

9 / 36

 Phénomène de seiche
 Système binaire d'astres en interaction

 Modélisation de la marée
 Potentiel total de marée

Ondes d'inertie Modélisation de la marée dynamique

$$\underline{F}_{A}^{(u)}(\underline{x}) = GM_{A} \frac{\underline{x}_{A} - \underline{x}}{\|\underline{x}_{A} - \underline{x}\|^{3}} \quad \text{et} \quad \underline{F}_{A}^{(c)} = -\frac{GM_{A}}{r_{A}^{2}} \underline{e}_{x}$$

Potentiel de la marée dû à l'astre A : $\underline{F}_{A}^{(c)} + \underline{F}_{A}^{(u)} = -\underline{\text{grad}} V_{A}$ $V_{A}(\underline{x}) = G M_{A} \left[\frac{1}{r_{A}} - \frac{1}{\|\underline{x}_{A} - \underline{x}\|} + \frac{(\underline{x} - \underline{x}_{T}) \cdot \underline{e}_{x}}{r_{A}^{2}} \right]$

Potentiel total de marée

Modélisation de la marée Ondes d'inertie

Aquaplanète sans rotation et avec gravité :
$$\underline{F}_{T}^{(u)} = -\underline{\text{grad}} V_{T}^{(u)}$$

$$\underline{0} = -\frac{1}{a} \underline{\text{grad}} p + \underline{F}_{A}^{(c)} + \underline{F}_{A}^{(u)} + \underline{F}_{T}^{(u)}$$

Modélisation de la marée Potentiel total de marée Ondes d'inerti

Force de marée due à la Lune et au Soleil :

$$\underline{F}(\underline{x}) = -\underline{\operatorname{grad}} V(\underline{x}) \quad \operatorname{avec} \quad V(\underline{x}) = V_L(r, \theta_L) + V_S(r, \theta_S)$$

Distances zénitales $\theta_L(t)$ et $\theta_S(t)$ et rotation de la Terre :

$$V(\underline{x},t) = \sum_{n} A_{n}(\underline{x}) \cos[\omega_{n} t - \phi_{n}(\underline{x})]$$

Onde	Dénomination	A _n	T _n
<i>M</i> ₂	lunaire moyenne	0,4543	12,420 h
<i>S</i> ₂	solaire moyenne	0,2120	12,000 h
N ₂	elliptique majeure lunaire	0,0880	12,658 h
k _x	déclinationnelle	0,2655	23,934 h
O_1	lunaire principale	0,1826	25,819 h
P_1	solaire principale	0,0880	24,065 h
M _b	bi-mensuelle	0,0783	18,77 ј
M _m	mensuelle	0,0414	27,55 j
		4 D >	· 1월 2 · 1월 2 · 1월 2

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT Seiches et marées

15 / 36

Modélisation de la marée Ondes d'inertie Modélisation de la marée

Notations :

Vitesse horizontale : $\underline{U}(\lambda, \phi, t)$ Profondeur de la bathymétrie : $h_f(\lambda, \phi)$ Elévation de la surface libre : $\eta(\lambda, \phi, t)$ Paramètre de Coriolis : $f(\phi) = 2\Omega \sin \phi$

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT Seiches et marées

Phénomène de seiche Modélisation de la marée Pot

arée Potentiel total de marée ertie Modélisation de la marée dynamique

Marée en présence de continents :

 $\eta = \eta_{aqua} + \eta_{libre}$ avec η_{aqua} la marée de l'aquaplanète et η_{libre} les oscillations libres (V = 0) forcées par les conditions aux limites :

$$\underline{U} \cdot \underline{n} = 0 \implies \underline{U}_{libre} \cdot \underline{n} = -\underline{U}_{aqua} \cdot \underline{n}$$

Phénomène de seiche Modélisation de la marée Ondes d'inertie	Ondes de Poincaré Ondes de Kelvin de bord Amphidromie de Kelvin	

▲ 臣 ▲ 臣 ● � � ◆

22 / 36

Equations de Saint Venant 2D inicaires	
$\frac{\partial u}{\partial t} - f_0 v = -g \frac{\partial \eta}{\partial x}$ $\frac{\partial v}{\partial t} + f_0 u = -g \frac{\partial \eta}{\partial y}$ $\frac{\partial \eta}{\partial t} + h_r \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$	Paramètre de Coriolis : $f = f_0$ Profondeur de l'océan : $h_f = h_r$ Notation de vitesse : $c = \sqrt{g h_r}$

Phénomène de seiche Modélisation de la marée Ondes d'inertie Ondes de Kelvin de Amphidromie de K

Phénomène de seiche Ondes de Poincaré Modélisation de la marée Ondes de Kelvin de bord Ondes d'inertie Amphidromie de Kelvin		
Ondes de Proudman		
$(u, v, \eta) = (\widehat{u}, \widehat{v}, \widehat{\eta}) e^{i k_x x + \alpha_2 y - i \omega t}$		
Propriétés d'une onde :		
Relation de dispersion :		
$\omega = \sqrt{f_0^2 + c^2(k_x^2 - \alpha_2^2)}$		
Φ Φ Φ Surface libre :		
$u = \frac{g}{2} \frac{\omega k_x + f_0 \alpha_2}{t^2 - 2} \eta_m \cos(k_x x - \omega t) e^{\alpha_2 y}$		
$c^{2} k_{x}^{2} - \alpha_{2}^{2}$ $g \omega \alpha_{2} + f_{0} k_{x}$		
$v = \frac{\sigma}{c^2} \frac{d^2 (1 + 0) x_x}{k_x^2 - \alpha_2^2} \eta_m \sin(k_x x - \omega t) e^{\alpha_2 y}$		
\implies ellipses, rapport entre les axes : $\frac{\omega k_x + f_0 \alpha_2}{\omega \alpha_2 + f_0 k_x}$. C	

Methodski Methodski

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT	Seiches et marées	29/3

lisation de la marée Ondes d'inertie Ondes d'inertie

Superposition de deux ondes de Kelvin de bord : $\eta = \hat{\eta}_g \cos(kx + \omega t) e^{\frac{f_0}{k}y} - \hat{\eta}_d \cos(kx - \omega t) e^{-\frac{f_0}{k}y}$ $u = -\frac{g\hat{\eta}_g}{c} \cos(kx + \omega t) e^{\frac{f_0}{k}y} - \frac{g\hat{\eta}_d}{c} \cos(kx - \omega t) e^{-\frac{f_0}{k}y}$ v = 0 $\int_{0}^{15} \int_{0}^{0} \int_{0}^{0} \int_{0}^{15} \int_{0}^{0} \int_{0}^{15} \int_{0}^$

MEC567 : SCIENCES DE L'EAU ET ENVIRONNEMENT Seiches et marées

Phénomène de seiche	Ondes de Poincaré
Modélisation de la marée	Ondes de Kelvin de bord
Ondes d'inertie	Amphidromie de Kelvin

32 / 36

34 / 36

Phénomène de seiche Modélisation de la marée Ondes d'inertie Amphidron

Ondes de Politicare Ondes de Kelvin de bord Amphidromie de Kelvin

Amphidromie de Kelvin

Phénomène de seiche Modélisation de la marée	Ondes de Poincaré Ondes de Kelvin de bord
Ondes d'inertie	Amphidromie de Kelvin

Ondes de Poincaré Ondes de Kelvin de bord Amphidromie de Kelvin

36 / 36