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Introduction

1. Modélisation turbulente

Les flux turbulents, comme celui d’un scalaire passif ou le tenseur
de Reynolds, sont des moyennes de produits de fluctuations
turbulentes. On les relie aux gradients des champs moyens.

2. Profils de vitesse

Le modèle turbulent de longueur de mélange est utilisé par les
ingénieurs. Il permet de dériver des profils logarithmiques près de
parois lisses ou rugueuses à partir de la loi de Von Karman.

3. Diagramme de Moody

Le diagramme de Moody permet de déterminer le coefficient de
frottement en fonction de l’écoulement moyen et de la rugosité.
Son application aux écoulements en charge est abordée.

MEC567 : SCIENCES DE L’EAU ET ENVIRONNEMENT Turbulence et frottement 2 / 24

Modélisation turbulente
Profils de vitesses

Diagramme de Moody

UD
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Écoulement en charge
Écoulement à surface libre

Us

Charge H, perte de charge linéique J et cisaillement τ∗

H =
p

ρ g
+ z +

U2

2 g
,

dH

ds
= −J et τ∗ = ρ g RH J

Coefficient de frottement λ

J = λ(Re)
U2

2 g DH
avec Re =

U DH

ν
et DH = 4 RH

Poiseuille circulaire

DH = D et λ =
64

Re

Poiseuille plan

RH = h et λ =
96

Re
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Expérience de Reynolds : Re = UD/ν
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Moyenne et fluctuations
Écoulements incompressibles
Viscosité turbulente

B′
B

B log EB

B B′
B

′′
a) b)

log(K) or log(ω)

Signal temporel b(t) = B(x , t) ou spatial b(x) = B(x , t) :

b(t) =

∫
IR

b̂(ω)e−i ω t dω ⇐⇒ b̂(ω) =
1

2π

∫
IR

b(t)e i ω t dt

b(x) =

∫∫∫
IR 3̂

b(K )e iK ·x dk3 ⇐⇒ b̂(K ) =
1

(2π)3

∫∫∫
IR3

b(x)e−i K ·x dx3

Spectres EB(ω) = 1
2 |b̂(ω)|2 ou EB(K ) =

∫∫
1
2 |b̂(K )|2dS motivent :

B(x , t) = B(x , t) + B ′(x , t)
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Scalaire passif B advecté par U :

∂B

∂t
+ U · grad B = kB ∆B

En utilisant div U = 0 :

∂B

∂t
+ div (U B) = kB ∆B

Décomposition B = B + B ′ et U = U + U ′ :

∂B

∂t
+ div (U B) = kB ∆B − div (U ′ B ′)

Flux turbulent de B :

FBt = U ′ B ′
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Équations de Navier-Stokes en moyenne de Reynolds :

div U = 0 et
∂

∂t
U +U ·grad U = −1

ρ
grad p +ν ∆U−div R

CK ε2/3K−5/3

log Kε
ε

ε

log E(K)
U

K0 Kd

U ′

Tenseur de Reynolds : Rij = U ′i U ′j
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Diffusivité turbulente kBt :

FBt = −kBt grad B avec FBt = U ′ B ′

∂B

∂t
+ U · grad B = div

[
(kB + kBt) grad B

]
Viscosité turbulente νt :

R = −2 νt d +
2

3
k I avec Rij = U ′i U ′j

Tenseur des taux de déformations : d ij = 1
2

[
∂Ui
∂xj

+
∂Uj

∂xi

]
Énergie cinétique turbulente : k = 1

2

(
U ′21 + U ′22 + U2

3

)
Pour un écoulement parallèle U = u(z) ex :

u′w ′ = −νt
∂u

∂z
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Longueur de mélange
Fond plat
Profils logarithmique

Longueur de mélange lm pour la viscosité turbulente νt :

νt = l2
m

√
2 d : d avec d : d = tr (d .d) = dij dji = dij dij

δ

U2

U1

δ

U

a) b)

U

δ

Uc)

a) lm ∼ 0.07 δ. b) lm ∼ 0.075 δ. c) lm ∼ 0.16 δ.

Analogie avec la viscosité moléculaire ν ∼ lmol umol :

νt = lm um où um ∼ lm

√
2 d : d et dij = 1

2

(
∂Uj

∂xi
+ ∂Ui

∂xj

)
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Longueur de mélange
Fond plat
Profils logarithmique

Pour un écoulement parallèle U = u(z) ex :

νt = l2
m

∣∣∣∣∂u

∂z

∣∣∣∣ et donc u′w ′ = −νt
∂u

∂z
= −l2

m

∣∣∣∣∂u

∂z

∣∣∣∣ ∂u

∂z

Longueur de mélange près d’un mur :

lm = κ z avec κ = 0.41 constante de “Von Karman”

z

x

u(z)
lm

lm

0
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Fond plat
Profils logarithmique

Écoulement forcé par un gradient de pression constant G :

0 = −1

ρ

∂p

∂x
+
∂

∂z

(
ν
∂u

∂z
− u′w ′

)
et 0 = −1

ρ

∂p

∂z
−g− ∂

∂z

(
w ′w ′

)

u(z)
0

z

x

R

τ∗

τ(z)

zvisq
ez ks

Contrainte tangentielle τ(z) = ρ
(
ν ∂u

∂z − u′w ′
)

∂p

∂x
= −G et τ(z) = τ∗ − G z ∼ τ∗ si R � τ∗/G

D’où

(
ν + l2

m

∣∣∣∣∂u

∂z

∣∣∣∣) ∂u

∂z
= u2

∗ en définissant τ∗ = ρ u2
∗
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Longueur de mélange
Fond plat
Profils logarithmique

lm = κ z =⇒
(
ν + κ2 z2

∣∣∣∣∂u

∂z

∣∣∣∣) ∂u

∂z
= u2

∗

Lisse : couche z ∈ [0, zvisq]

lm ∼ 0 =⇒ u

u∗
=

u∗ z

ν

Rugueux : couche z ∈ [0, z0]

z0 =
ks

33
et u(z) = 0

z

zvisq = 11ν/u∗

R

u(z)

a) b)0

z

ks
z0 = ks/33

R

u(z)

0

lisse pour
u∗ ks

ν
< 5 et rugueux pour

u∗ ks

ν
> 70
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Fond plat
Profils logarithmique

Dans la couche où ν est négligeable :

κ2 z2

∣∣∣∣∂u

∂z

∣∣∣∣ ∂u

∂z
= u2

∗ =⇒ u

u∗
=

1

κ
ln
(z

δ

)
+ ζ ,

z

zvisq = 11ν/u∗

R

u(z)

a) b)0

z

ks
z0 = ks/33

R

u(z)

0

Lisse : zvisq = 11 ν/u∗

usth

u∗
=

1

κ
ln

(
z

δsth

)
+ ζsth

δsth = ν/u∗
ζsth = 11− ln(11)/κ = 5.2

Rugueux : z0 = ks/33

urgh

u∗
=

1

κ
ln

(
z

δrgh

)
+ ζrgh

δrgh = ks

ζrgh = ln(33)/κ = 8.5
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Frottement moyen
Hydraulique en charge
Pertes de charge singulières

Moyenne sur la couche logarithmique :

u

u∗
=

1

κ
ln
(z

δ

)
+ ζ et zvisq ∼ 0 ou z0 ∼ 0

=⇒ U

u∗
=

1

R

∫ R

0

u

u∗
dz =

1

κ
ln

(
R

δ

)
+ ζ − 1

κ

z

zvisq = 11ν/u∗

R

u(z)

a) b)0

z

ks
z0 = ks/33

R

u(z)

0

Définition du coefficient de frottement λ :

U

u∗
=

√
8

λ
⇐⇒ τ∗ = ρ u2

∗ =
1

8
λ ρU2
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Frottement moyen
Hydraulique en charge
Pertes de charge singulières

Diamètre hydraulique DH = 4 R

1√
8

U

u∗
=

1√
λ

= a log10

(
DH

δ

)
+ b

où a = ln(10)/(κ
√

8) = 2.0 et b = [ζ − (1 + ln 4)/κ]/
√

8]

z

zvisq = 11ν/u∗

R

u(z)

a) b)0

z

ks
z0 = ks/33

R

u(z)

0

Coefficients de frottement λ pour fonds lisses ou rugueux :

1√
λsth

= 2.0 log10

(
Re
√
λsth

)
+ bsth avec Re =

U DH

ν
1√
λrug

= −2.0 log10 (Ru) + brgh avec Ru =
ks

DH
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Frottement moyen
Hydraulique en charge
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Formule de Colebrook pour tous types de fonds :

1√
λ

= −2.0 log10

(
Ru

αf
+

βf

Re
√
λ

)
αf ∈ [3, 4], βf ∈ [0, 6]

104 106 108
10!2

10!1

104 106 108
10!2

10!1

λ

Re
Ru = 10−4

Ru = 10−2

Ru = 10−1

Ru = 10−3 λ =
96
Re

λ

Ru = 10−4

Ru = 10−2

Ru = 10−1

Ru = 10−3

a) b)

Laminaire

Turbulent

Rugueux

Lisse

λ =
64
Re

Laminaire Rugueux

Lisse

Turbulent

Re

Hydraulique en charge :
αf = 3.7, βf = 2.51

Hydraulique à surface libre :
αf = 3, βf = 2.5
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104 106 108
10!2

10!1

λ

Re
Ru = 10−4

Ru = 10−2

Ru = 10−1

Ru = 10−3

Rugueux

10!4 10!3 10!2 10!1
10!2

10!1

Ru

λ
λ

=
φM

S
Ru

1/
3

λ = 1/ [−2 log 10
(Ru/

αf
)]
2

10−4 10−3 10−2 10−1

Re ≥ 107

Paramétrisation de Manning-Strickler pour les régimes rugueux :

λ = φMS Ru1/3

Proche de la formule de Colebrook pour φMS ∼ 0.2
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Équations de Navier-Stokes incompressibles turbulentes

div U = 0 ,
∂U

∂t
+U ·grad U = −grad (g z)− 1

ρ
grad p +

1

ρ
div τ

t

Tenseur des contraintes
visqueuses et turbulentes :

τ
t

= ρ (2 ν d − R)
A(s) U

L

s

es

τ∗
M1

M2

n

P(s)

Relation de Bernoulli : le long d’une ligne de courant L

H(M2) = H(M1)−
∫
L

(
1

g

∂U

∂t
+ J

)
· dM

avec H =
p

ρ g
+ z +

1

2 g
U

2
et J = − 1

ρ g
div (τ

t
)
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Charge hydraulique dans une conduite

H(s) =
pf (s)

ρ g
+ Zf (s) + α(s)

U2(s)

2 g

Vitesse moyenne

U(s) =
1

A(s)

∫∫
A(s)

U · es da

Coefficient

α(s) =
1

U2(s)

1

A(s)

∫∫
A(s)

U2 da

α
U2

2g

0

pf − pa

ρ g

l

J l

pa/(ρ g)

z

Zf

H

s
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Perte de charge linéique

J(s) =
1

A(s)

∫∫
A(s)

J · es da avec J = − 1

ρ g
div τ

t

Contrainte de cisaillement

τ∗(s) = − 1

P(s)

∫
P(s)

es ·τ t
·n dl

Rayon hydraulique

RH(s) = A(s)/P(s)

A(s)

n

P (s)

Relation entre τ∗ et J valable dans les cas graduellement variés

τ∗(s) = ρ g RH(s) J(s)
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Écoulements en charge turbulents : α ∼ 1

dH

ds
= −J avec H =

pf

ρ g
+ Zf +

U2

2g
et J = λ(Re,Ru)

U2

2 g DH

Pertes de charges singulières

∆H = Kg
U2

2 g

U1 U2

A2

A1

p1

p1

p1

p2

ϕ

ρc

DH
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U1 U2

A2

A1

p1

p1

p1

p2

U2U1

b)a)

a) Élargissements brusques

∆H = Kg
U2

1

2 g
avec Kg =

(
1− A1

A2

)2

.

Bilan de quantité de mouvement (théorème d’Euler) :
ρU2

1 A1 + p1 A2 = ρU2
2 A2 + p2 A2

b) Rétrécissement brusques

∆H = 0 : pas de perte de charge singulière
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Coudes

∆H = Kg
U2

2 g
avec Kg =

ϕ

π/2

[
0.131 + 1.847

(
2ρc

DH

)−3.5
]

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2ϕ

ρc

DH

π Kg

2 ϕ

ρc
DH
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