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Introduction

1. Cinématique

Un écoulement décrit des particules fluides de vitesse U et induit
les représentations eulérienne ou lagrangienne des champs. La
dérivée particulaire est obtenue en suivant les trajectoires.

2. Lois de conservation

Les théorèmes de transport sur des domaines de particules
permettent de définir le tenseur des contraintes et de dériver les
lois de conservation de la masse et de la quantité de mouvement.

3. Fluides newtoniens

Le tenseur des contraintes visqueuses est proportionnel au tenseur
des taux de déformations pour cette loi rhéologique. Les équations
de Navier-Stokes sont illustrées sur deux exemples.
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Équations de Navier-Stokes incompressibles

div U = 0 et
dU

dt
= −1

ρ
grad p + F + ν ∆U

U(x , t) = (u, v ,w) est la vitesse, t le temps, x = (x , y , z) l’espace,
ρ est la masse volumique constante, p est la pression,
F sont les forces massiques, ν est la viscosité cinématique.

Dérivée particulaire : d
dt = ∂

∂t + U · grad

div U = ∂u
∂x + ∂v

∂y + ∂w
∂z et grad p = (∂p

∂x ,
∂p
∂y ,

∂p
∂z )

∆U = (∆u,∆v ,∆w) et ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Ces équations viennent de

La conservation de la masse et de la quantité de mouvement

La contrainte d’incompressibilité

La loi rhéologique des fluides newtoniens
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Cinématique
Lois de conservation

Fluides newtoniens

Représentations eulériennes et lagrangiennes
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Tenseur des taux de déformation

Trajectoires :

d

dt
x(t) = U[x(t), t] avec x(0) = a ⇐⇒ x(t) = X (a, t)

x x(t)

δx(t)

a δV(t∗) δV(t)
δV0

X(a, t∗)

F (a, t∗)

δa
U(x, t)

δx(t∗)

Matrice jacobienne F (a, t) avec Fij(a, t) = ∂Xi
∂aj

(a, t)

X (a + δa, t) = X (a, t) + F (a, t) · δa + O(‖δa‖2)

=⇒ δx(t) ∼ F (a, t) · δa

HYDRODYNAMIQUE DE L’ENVIRONNEMENT, O. THUAL Écoulements incompressibles 4 / 20
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Pour démontrer δV(t) = δV0 J(a, t) avec J = det F , considérons

δV(t) =
(
δx(t), δx ′(t), δx

′′
(t)
)

=

∣∣∣∣∣∣
δx1 δx ′1 δx

′′
1

δx2 δx ′2 δx
′′
2

δx3 δx ′3 δx
′′
3

∣∣∣∣∣∣
U

x x(t)

δx

a

δV

δx′

δx
′′

δa
′′

δa
′

δa
x′(t)

x
′′
(t)

x
′′′

(t)

Choisissons δx(0) = δa ex , δx ′(0) = δa ey et δx
′′

(0) = δa ez :

δV(t) =
(
F · δx(0), F · δx ′(0), F · δx ′′

(0)
)

= δV(0) det F
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Changement de variable x = X (a, t) dans un domaine mobile :∫∫∫
D(t)

B(x , t) d3x =

∫∫∫
D0

B(L)(a, t) J(a, t) d3a

avec D(t) = X (D0, t) et J(a, t) = det F (a, t).

U

xa

D0

∂D0 ∂D(t)
D(t)

n

X(a, t)

A(x, t)

Représentations eulérienne et lagrangienne d’un champ B :

B[X (a, t), t] = B(L)(a, t) ⇐⇒ B(x , t) = B(L)[A(x , t), t]
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Dérivée particulaire :

dB

dt
(x , t) =

∂B

∂t
(x , t) + U(x , t) · grad B(x , t)

U

x(t)a Uis
o
−

B
(x

, t
)

b(t)
b(0)

B(x∗, t)

t

x∗

Champ B mesuré le long d’une trajectoire x(t) :

b(t) = B(L)(a, t) = B[x(t), t]

=⇒ db

dt
(t) =

∂B(L)

∂t
(a, t) =

(
∂B

∂t
+ U · grad B

)
[x(t), t]
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Matrice jacobienne du champ de vitesse :

U(x + δx , t) = U(x , t) + K (x , t) · δx + O(‖δx‖2)

K = ω + d avec ωij = 1
2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
et dij = 1

2

(
∂Ui
∂xj

+
∂Uj

∂xi

)
U(x ′, t) = U(x , t) + ω(x , t) ∧ (x ′ − x) + d · δx + O(‖δx‖2)

U

x x(t)
δx

x′(t)
U(x + δx, t)

U(x, t)

ω

dδx(t)

d

dt
[δx(t)] = U[x ′(t), t]−U[x(t), t] = K [x(t), t]·δx(t)+O[‖δx(t)‖2]
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Expression du taux de variation des volumes
(

d
dt δV

)
/δV = div U :

choisissons δx(t∗) = δx ex , δx ′(t∗) = δx ey et δx
′′

(t∗) = δx ez

U

x∗ x(t)

δx

δV

δx′

δx
′′ ω

d

d

dt
δV(t∗) =

(
K · δx , δx ′, δx ′′

)
+
(
δx ,K · δx ′, δx ′′

)
+
(
δx , δx ′,K · δx ′′

)
= (δx)3

 ∣∣∣∣∣∣
K11 0 0
K21 1 0
K31 0 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
1 K12 0
0 K22 0
0 K32 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
1 0 K13

0 1 K23

0 0 K33

∣∣∣∣∣∣


= (δx)3 (K11 + K22 + K33) = δV(t∗) div U[x(t∗), t∗]
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Forme générale d’une équation de bilan :

d

dt

∫∫∫
D(t)

c(x , t) d3x+

∫∫
∂D(t)

qc(x , n, t) dS =

∫∫∫
D(t)

fc(x , t) d3x

D(t)

∂D(t)

n

x

qc(x, n, t)
dS

Si D(t) est un domaine transporté par le mouvement U :

d

dt

∫∫∫
D(t)

c d3x =

∫∫∫
D(t)

∂c

∂t
d3x +

∫∫
∂D(t)

c U · n dS
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Démonstration :

d

dt

∫∫∫
D(t)

c(x , t) d3x =
d

dt

∫∫∫
D0

c(L)(a, t) J(a, t) d3a

=
∫∫∫
D0

(
∂c(L)

∂t J + c(L) ∂J
∂t

)
d3a =

∫∫∫
D0

[(
dc
dt

)(L)
+ c(L)(div U)(L)

]
J(a, t)d3a

combiner δV(t) = J(a, t) δV(0) et d
dt δV(t) = div U[x(t), t] δV(t)

pour obtenir ∂J
∂t (a, t) = div U[X (a, t), t] J(a, t)

=

∫∫∫
D(t)

(
dc

dt
+ c div U

)
d3x =

∫∫∫
D(t)

∂c

∂t
d3x+

∫∫
∂D(t)

c U·n dS

utiliser le théorème de la divergence et les relations
dc
dt = ∂c

∂t + U · grad c et U · grad c + c div U = div (c U)
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Théorème du flux : si pour tout D(t) on a

d

dt

∫∫∫
D(t)

c(x , t) d3x+

∫∫
∂D(t)

qc(x , n, t) dS =

∫∫∫
D(t)

fc(x , t) d3x

n

−ex

−ey

−ez

x

y

z

x

δSz

δSy
δSx

δSn

alors : linéarité et vecteur flux

qc(x , n, t) = Q
c
(x , t) · n

Démonstration des petits tétraèdres

d

dt

∫∫∫
D(t)

c(x , t) d3x+

∫∫
∂D(t)

Q
c
(x , t)·n dS =

∫∫∫
D(t)

fc(x , t) d3x
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Bilan local et loi de conservation∫∫∫
D(t)

∂c

∂t
d3x +

∫∫
∂D(t)

(
c U + Q

c

)
· n dS =

∫∫∫
D(t)

fc d3x

∂c

∂t
+ div (c U + Q

c
) =

dc

dt
+ c div U + div Q

c
= fc

Conservation de la masse

∂ρ

∂t
+ div (ρU) =

∂ρ

∂t
+ U · grad ρ+ ρ div U =

dρ

dt
+ ρ div U = 0

Contrainte isochore
[

d
dt δV(t)

]
/δV(t) = div U = 0

L’équation de conservation de la masse s’écrit :
dρ

dt
= 0

Si ρ(x , 0) = ρ0 (homogène) à t = 0 on a donc ρ = ρ0
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Principe fondamental de la dynamique :

d

dt

∫∫∫
D(t)

ρU d3x −
∫∫

∂D(t)
T (x , n, t) dS =

∫∫∫
D
ρF d3x

D(t)

∂D(t)

n

x
T (x, n, t) dS

Tenseur des contraintes :

T (x , n, t) = σ(x , t) · n

T : forces surfaciques de contact
σ : tenseur symétrique

Résultante volumétrique des forces de contact div σ :

ρ
dU

dt
= ρ

(
∂U

∂t
+ U · grad U

)
= ρF + div σ

i ème composante du vecteur div σ :
∂σij

∂xj
=:
∑3

j=1
∂σij

∂xj
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Loi rhéologique des fluides newtoniens

σ = −p I + τ = −p I − 2µ

3
div U I + 2µ d

Pour les fluides incompressibles, la contrainte div U = 0 conduit à :

σ = −p I + 2µ d =⇒ div σ = −grad p + µ ∆U

Équations de Navier-Stokes incompressibles (ν = µ/ρ)

div U = 0 et
dU

dt
= −1

ρ
grad p + F + ν ∆U

Conditions aux limites :

Rigides : U = 0

Libres : U · n = 0 et σ · n − (n · σ · n) n = 0

Surface libre : dF
dt = 0 et σ · n = −pa n en F (x , t) = 0
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Solution laminaire U = u(r) ex

Conditions aux limites rigides : u = 0 en r = D/2

x

r

u(r)D
0 A

z er

0 = −1

ρ

∂p

∂x
+ ν∆u , 0 = −1

ρ

∂p

∂y
et 0 = −1

ρ

∂p

∂z
− g

Forçage par un gradient de pression constant G :

p(x) = pr − G x − ρ g z , u(r) =
G

ρ ν

(
D2

16
− r2

4

)
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x

r

u(r)D
0 A

z er

Vitesse moyenne : U =
1

A

∫
A

u da

Charge hydraulique H et perte de charge linéique J

H =
p

ρ g
+ z +

u2

2 g
, J =

1

A

∫
A

1

g
(−ν ∆u) da

∂H

∂x
= −J =⇒ G

ρ g
= J .

J = λ
U2

2 g D
avec λ =

64

Re
et Re =

U D

ν

Conductivité hydraulique Kp

U = −Kp
dH

dx
avec Kp =

gD2

32 ν
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Solution laminaire U = u(r) es . Conditions aux limites :

(u = 0 en r = 0) et (σ · er = −pa er en r = h)

Tenseur des contraintes :

σ = −p I + 2 ρ ν d

d = 1
2

du
dr (er ⊗ es + es ⊗ er )

= 1
2

du
dr

(
0 1
1 0

)
(es ,er )

z

h

g xγ

u(r)

s

r

er

es

0

0

Zf (s)

0 = g I + ν
d2u

dr2
(r) et 0 = −1

ρ

∂p

∂z
(x , z)− g avec I = sin γ

p

ρ g
+ z =

pa

ρ g
+ h cos γ + Zf (s) et u =

gI

ν

(
h r − r2/2

)
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z

h

g xγ

u(r)

s

r

er

es

0

0

Zf (s) Vitesse moyenne : U =
1

h

∫ h

0
u dr

Charge hydraulique H et perte de charge linéique J

H =
pa

ρ g
+ h cos γ+ Zf (s) +

u2

2 g
, J =

1

h

∫ h

0

1

g

(
−ν d2u

dr2

)
dr

∂H

∂s
= −J =⇒ I = J

J = λ
U2

2gDH
, λ =

96

Re
, Re =

U DH

ν
et DH = 4 h

Contrainte de cisaillement τ∗ = es · σ · er en z = Zf (s)

τ∗ = ρ g RH J avec RH = h

HYDRODYNAMIQUE DE L’ENVIRONNEMENT, O. THUAL Écoulements incompressibles 19 / 20
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Charge hydraulique H et perte de charge linéique J

H =
p

ρ g
+ z +

u2

2 g
, J =

1

A

∫
A

1

g
(−ν ∆u) dA

Relation de Darcy-Weissbach et contrainte de cisaillement

J = λ
U2

2 g DH
, τ∗ = ρ g RH J avec DH = 4 RH

x

r

u(r)D
0 A

z er

λ =
64

Re
, DH = D

Re =
U DH

ν

z

h

g xγ

u(r)

s

r

er

es

0

0

Zf (s)

λ =
96

Re
, RH = h
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