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Introduction

Un écoulement décrit des particules fluides de vitesse U et induit
les représentations eulérienne ou lagrangienne des champs. La
dérivée particulaire est obtenue en suivant les trajectoires.

2. Lois de conservation

Les théoremes de transport sur des domaines de particules
permettent de définir le tenseur des contraintes et de dériver les
lois de conservation de la masse et de la quantité de mouvement.

3. Fluides newtoniens

Le tenseur des contraintes visqueuses est proportionnel au tenseur
des taux de déformations pour cette loi rhéologique. Les équations
de Navier-Stokes sont illustrées sur deux exemples.
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Equations de Navier-Stokes incompressibles

d 1
divU=0 et —g:—fg@jp—i—EerAg
dt P

U(x,t) = (u, v, w) est la vitesse, t le temps, x = (x, y, z) |'espace,
p est la masse volumique constante, p est la pression,
F sont les forces massiques, v est la viscosité cinématique.

Ly . - .d _ 0
Dérivée particulaire : & = &= + U - grad

div U= 924+ ;—F%’ZV et g@p_(%v%>%)
AU = (Au,Av,Aw) et A= 4 L+

Ces équations viennent de

@ La conservation de la masse et de la quantité de mouvement
@ La contrainte d’incompressibilité

@ La loi rhéologique des fluides newtoniens

HYDRODYNAMIQUE DE L'ENVIRONNEMENT, O. THUAL Ecoulements incompressibles 3/20



Cinématique Représentations eulériennes et lagrangiennes
Dérivée particulaire
Tenseur des taux de déformation

Trajectoires :

A\

Matrice jacobienne F(a,t) avec Fj(a,t)

X(a+da, t) = X(a,t)+ F(a, t)- da+ 0O(||9al?)
= ox(t) ~ F(a, t)- da
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Cinématique Représentations eulériennes et lagrangiennes
Dérivée particulaire
Tenseur des taux de déformation

Pour démontrer 6V(t) = 0Vo J(a, t) avec J = det F, considérons

Choisissons 0x(0) = dae,, 0x'(0) = dae, et dx"(0)=dae, :

5V(t) = (E - 0x(0), E-6X(0), E-8x"(0)) = V(0) det E
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Cinématique Représentations eulériennes et lagrangiennes
Dérivée particulaire
Tenseur des taux de déformation

Changement de variable x = X(a, t) dans un domaine mobile :

JIL.,, B t)d3x/// O(a,1) (o, 1)

avec  D(t) = X(Do,t) et J(a, t) = det F(a, t).

U

5
D
=
Q
o)
=
£

0Dy

Représentations eulérienne et lagrangienne d'un champ B :

B[X(a, t),t] = BB (a,t) < B(x,t)=BWD[A(x,1),1]
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Cinématique Représentations eulériennes et |
Dérivée particulaire
Tenseur des taux de déformation

Dérivée particulaire :

ﬁ(x t)—aj
dt =7 Ot

b(t) Bz, 1)
// Q)@’?\ ,[4»15

LA =

(x,t) + U(x,t) -grad B(x, t)

b(t) = BV (a,t) = Bx(1), ]

(L)
S0 =20 = (5 + U emed B) (0.1

HYDRODYNAMIQUE DE L'ENVIRONNEMENT, O. THUAL Ecoulements incompressibles 7/20



Cinématique Représentations eulériennes et lagrangiennes

Dérivée particulaire
Tenseur des taux de déformation

Matrice jacobienne du champ de vitesse :

U(x + 0x, t) = U(x, t) + K(x, t) - dx + O(]|8x|[?)

1 (oU; oy; 1 (0U; ay;
é:g-}-g avec Wij:i(axj Bx,{) et dif:§(<9><j+8x;-,)

UK, 1) = U(x, t) + w(x, t) A (x' = x) +d - ox + O(]|x|1?)

Py Uz + (59[: t) e
5z "_\ D" d 2/(t)
: Ui - z(t)

% [0x(£)] = UL (¢), t]-Ulx(2), t] = Klx(t), t]-0x(£)+O[| ax(t)||]
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Cinématique Représentations eulériennes et lagrangiennes
Dérivée particulaire
Tenseur des taux de déformation

Expression du taux de variation des volumes (%(ﬂ)) /oY =div U :

choisissons 0x(t.) = dx e,, 0x'(t.) =dxe, et ox"(t.) =ox e,

U Vo s N W
ox d
z, od 0
d

Zov(t) = (g ox, Q/ix) n <6x, K. ox. 5x”) n (g@d,g - Q)

Kii 0 0] |1 Ko O] |1 0 Kis
=(6x)3||Kax 1 0/+1]0 Koo O/ +[0 1 Ko
K31 01 0 K32 1 00 K33

= (0x)® (K11 + Kaz + Ks3) = 0V(t.) div U[x(t.), t.]
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Théoréemes de transport
Lois de conservation Flux et bilan local
Equation de conservation de la quantité de mouvement

Forme générale d'une équation de bilan :

jt///p(t) c(x,t) d3x+//aD(t) gc(x,n, t)dS = ///D(t) f(x, t) d3x

Si D(t) est un domaine transporté par le mouvement U :

e 0
dt JJJ)p() p(e) Ot aD(t)
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Théoréemes de transport
Lois de conservation Flux et bilan local

Equation de conservation de la quantité de mouvement

Démonstration : J

jt///v(r) el t) x = jt///po ca,1) J(a 1) da

= ﬂrpo (8C(L g ) d*a = ﬂD [( )( )+ c(div U)( )} J(a, t)d?a

combiner §V(t) = J(a, t) 6V(0) et %5V(t) = div U[x(t), t] §V(t)
pour obtenir at( t) =div U[X(a, t), t] J(a,t) ’

/// t)( —|—cd|vU>d3x—///D(t d3x+//dD(t u

utiliser le théoreme de la divergence et les relations
%:%—i—g'g@jc et U-grad c + cdivU =div (c U) \
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Théoremes de transport
Lois de conservation Flux et bilan local
Equation de conservation de la quantité de mouvement

Théoreme du flux : si pour tout D(t) on a

jt///p(t) c(x, 1) d3X+//8’D(t) qe(x,n,t)dS :///D(t) £.(x, t) d®x

alors : linéarité et vecteur flux

Yy qc(la n, t) = QC(Ka t) -n

Démonstration des petits tétraedres

g JlL e [[  aonds=[J] eeod
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Théoremes de transport
Lois de conservation Flux et bilan local
Equation de conservation de la quantité de mouvement

Bilan local et loi de conservation

W 3t 5 Jhogy (27 02-295= [}, %

d
08 L div(clU+Q) =% {cdvUtdvg =

ot

Conservation de la masse

ap . _Op . _dp : _
8t+d|v(pg)—6t+g grad p + pdiv U = dt—|—pd|vg—0

dt

Contrainte isochore [%(W(t)] /oV(t) =divU =0

L'équation de conservation de la masse s'écrit : — =0

Si p(x,0) = po (homogene) a t =0 on a donc p = po
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Théoremes de transport

Lois de conservation Flux et bilan local
Equation de conservation de la quantité de mouvement

Principe fondamental de la dynamique :

d/// pUd3X_// I(Kaﬁa t) dS:/// p£d3X
t D(t) aD(t) L

ID(t) Tenseur des contraintes :

T(z,n,t)

= \£H Lo 'a

. forces surfaciques de contact
: tenseur symétrique

I3

1o |~

VO

Résultante volumétrique des forces de contact div

du ou
— <+U-gradU>=pF+iva

Pat =P ot
3 Ba,-j

. 0oy
Toxg Zj:l 0x;

N

/M€ composante du vecteur div o

1
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Equations deNavier-Stokes
Ecoulement de Poiseuille dans un tuyau

Fluides newtoniens Fluide visqueux sur un plan incliné

Loi rhéologique des fluides newtoniens

2
g=—pltr=—pl-"FdvUl+2ud

Pour les fluides incompressibles, la contrainte div U = 0 conduit a :

divU=0 et ;:—lg@dp—kf-l—l/Ag
Conditions aux limites : p
@ Rigides: U =0
@ Libres: U - n—O et

@ Surface libre : 2

O HQ
1)
—+
I
=]

Il

|
e
[}
=]
o
>
j.l
—~~
<
=
N—r

Il
o
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Equations deNavier-Stokes
Ecoulement de Poiseuille dans un tuyau
Fluides newtoniens Fluide visqueux sur un plan incliné

Solution laminaire U = u(r) e,

Conditions aux limites rigides : v =0 en r=>D/2

4\2

() ' F——=u) [

0:—1@+VAU, 0
p Ox
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Equations deNavier-Stokes
Ecoulement de Poiseuille dans un tuyau

Fluides newtoniens Fluide visqueux sur un plan incliné

r‘\ WA e, )
alr Vitesse moyenne : U = / u da
Qri="G A

Charge hydraulique H et perte de charge linéique J

2
p u 1 / 1
H=—+z+_—, J== | —(—vAu) da
PE 2g A Ag( )
OH
Ox Pg
U? 64 UD
pr— —_ — R —_— —
J=A 22D avec e et e ”
Conductivité hydraulique K,
dH gD?
U = *Kp a avec Kp S 3271/ |
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e es
oulement de Poiseuille dans un tuyau
Fluides newtoniens Fluide visqueux sur un plan incliné

Tenseur des contraintes :

= —pl+2pvd
3 (e, ®e,+e,®¢,)

r
du (0 1)
dr
LU (es-e,)

e Ilo
|

o 3

d? 10
0:gl+uwg(r) et OZ—Ea—Z(X,z)—g avec [ =sinvy
/
L+z:&—i-hcos'y—i—Z,c(s) et u:g—(hr—r2/2)
pe pe v
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Equations deNavier-Stokes
Ecoulement de Poiseuille dans un tuyau

Fluides newtoniens Fluide visqueux sur un plan incliné

1 h
Vitesse moyenne : U = h/ udr
0

Charge hydraulique H et perte de charge linéique J

2 h 2
Pa u 1 1 d“u
H=-—+h Z — — - _
pg+ cosy + f(5)+2g, J h/o g< Vdr2> dr
oH
0s
U? 96 U Dy
J 2gDy ’ Re’& © v € H

Contrainte de cisaillement 7. = e, - g - €, en z = Z¢(s)

T« =pgRyJ avec Ry =h
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Charge hydraulique H et perte de charge linéique J

2

p u 1 1
H= " +z+_—, J:/—yAu dA
rg 2g A g( ) )

Relation de Darcy-Weissbach et contrainte de cisaillement

2
= 2gUD , T« =pg&RyJ avec Dy = 4Ry
H
r\ z e,
Or >0
) 0 \4 UiB
Re = al
64 v
A= — Dy =D
Re ) H J
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